Kenneth Burch
Spectroscopic studies of novel solids, interfaces and nano-materials. Materials of interest include: Topological Insulators, Unconventional Superconductors, Spin/Valleytronics, thermoelectrics and 2D atomic crystals.
Eranthie Weerapana
Our research program applies chemical probes and mass spectrometry-based proteomics to investigate and perturb protein activities in complex proteomes. In particular, we focus on understanding the role of cysteine-mediated protein activities in cancer and degenerative diseases associated with aging. These activities comprise proteases, oxidoreductases and metabolic enzymes that rely on cysteine residues for catalysis and regulation. Functional cysteine residues demonstrate heightened reactivity relative to non-functional cysteines, and are sensitive to a myriad of oxidative protein modifications that serve to regulate protein activity in vivo. In cancer and age-related degenerative diseases, the cellular redox homeostasis is severely disrupted and the resulting oxidative stress can have dramatic consequences on cysteine-mediated protein activities. Through a multidisciplinary approach that encompasses aspects of synthetic chemistry, cell biology, proteomics and mass spectrometry, we will investigate the dysregulation of cysteine-mediated protein activities to identify therapeutic targets and small-molecule drug-leads for the diagnosis and treatment of diseases such as cancer.
Dunwei Wang
Photosynthesis harvests solar energy and stores it in chemical forms. When used to produce fuels, this process promises a solution to challenges associated with the intermittent nature of sunlight. Theoretical studies show that photosynthesis can be efficient and inexpensive. To achieve this goal, we need materials with suitable properties of light absorption, charge separation, chemical stability, and catalytic activity. For large-scale implementations, the materials should also be made of earth abundant elements. Due to the intricacy of these considerations, a material that meets all requirements simultaneously is absent and, as a result, existing photosynthesis is either inefficient or costly or both, creating a critical challenge in solar energy research. At Boston College, we have developed strategies to combat this challenge through rational material design and precise synthesis control. Guided by an insight that complex functionalities may be obtained by combining multiple material components through homo- or hetero-junctions, we have produced a number of material combinations aimed at solving fundamental challenges common in inorganic semiconductors such as poor charge collection, mismatch of energy levels, and weak light absorption. Much of our effort is focused on using these materials for solar water splitting. More recently we have started devising highly specific reaction routes for carbon dioxide photofixation. Exciting new progress in a technologically relevant field of rechargeable batteries has been made by us, as well.
Qiong Ma
maqa at
The Ma lab focuses on the “LEGO” engineering of atomically thin quantum materials, such as graphene, transition metal dichalcogenide and many others. Many interesting quantum phenomena can arise from the “LEGO” interface, such as Berry phase, topology, magnetism, ferroelectricity, superconductivity. We employ and develop tools to decipher the mysteries of electrons and other fundamental excitations in the “LEGO” materials.
John Christianson
The focus of John Christianson's research is to determine how stress interacts with the neural systems that permit individuals to adapt to potentially dangerous and changing environments. The current emphasis is on the neural mechanisms that underly safety learning. The laboratory employs a multidisciplinary approach to study brain circuits and behavior including sophisticated behavioral paradigms, electrophysiology and optogenetics. The overall goal is to provide new insight into the organization of the brain and behavior and improve treatment for psychological illness.
Brian Zhou
The Zhou lab at Boston College pushes the boundaries of quantum control over electron and nuclear spins in diamond to explore fundamental aspects of quantum dynamics and expand capabilities for applications. Concurrently, we utilize solid-state quantum systems as novel sensors for the electric and magnetic properties of quantum materials over a wide phase diagram. We are motivated by the overarching goal of creating electronic technologies enhanced by quantum coherence and correlation.
Marc-Jan Gubbels
Genetic approaches towards the cell biology of Toxoplasma gondii. The protozoan parasite Toxoplasma gondii is a member of the phylum Apicomplexa and can cause severe disease in humans. This parasite is easily grown and manipulated in vitro and has in recent years developed as a safe and versatile model for other apicomplexan parasites (e.g. malaria). We are using and developing forward, reverse and functional genetic tools using enzymatic as well as fluorescent protein reporter assays in combination with cell sorting and fluorescence microscopy to learn more about the parasite’s cell biology.

Parasite replication is conserved, yet are variations on a theme in different apicomplexan parasites. Toxoplasma divides by an internal budding process called endodyogeny where two daughters are being assembled inside the mother, which is significantly different from mammalian cell division. The parasite’s cytoskeleton, consisting of microtubules as well as a membrane skeleton in combination with intermediate protein filaments (the inner membrane complex or IMC) serves as a scaffold for daughter assembly. Recently, we identified several components that act in the cytoskeleton assembly as well as daughter formation which are currently being characterized in detail.

Host cell invasion is an essential step in the life cycle of Apicomplexa and identifying essential steps and/or molecules in the process would provide attractive potential therapeutic targets. To identify key molecules in invasion, a set of conditional parasite invasion mutants has been generated through chemical as well as insertional (conditional) mutagenesis. Mutants are being analyzed through a set of cell biological assays while at the same time the mutated genes are being identified using cosmid library complementations as well as plasmid rescues.
Jan Engelbrecht
Theory of strongly correlated electron systems, including pairing correlations in high-temperature superconductors, Fermi Liquid vs. non-Fermi Liquid metals, local Fermi liquids and the metal-insulator transition.
Renato Mirollo
Nonlinear dynamical systems and applications, with an emphasis on coupled oscillator networks, synchronization and other collective phenomena.
Timothy van Opijnen
We work on microbial systems biology and try to understand a bacterium as a complete system by applying a combination of high-throughput robotics, next generation sequencing and computational biology. The goal of the lab is to develop new antibiotics and engineer bacteria with new properties that can aid in curing disease. To make our research go lightning fast we are the proud owner of a unique state-of-the-art robotics system, which we use extensively to focus on three subjects:

Antibiotics, Genome-wide strategies and Engineering bacteria.
Fazel Tafti
Fazel Tafti joined the BC physics department, developing new materials in a wide range fo areas. He received his Ph.D. in condensed matter physics from U. of Toronto and did a postdoc in Solid State Chemistry at Princeton.
Matthias Waegele
Our research team addresses current challenges in heterogeneous catalysis for the synthesis of renewable fuels. While the establishment of phenomenological correlations between catalytic activity and reaction conditions has been the principal driving force for catalyst discovery, a design process more deeply rooted in an understanding of the molecular events occurring at the catalytic interface is desired. To this end, we develop and employ transient spectroscopies uniquely suited to probe interfacial chemical and charge-transfer dynamics. Using these techniques, we carry out spectroscopic case studies on carefully designed model systems to discover the molecular origins underlying catalytic reactivity and selectivity. We are particularly interested in the rich chemistry exhibited by electrified interfaces suitable for (photo-)catalytic water oxidation or carbon dioxide reduction.
Dr. Losick’s laboratory takes advantage of the ease and power of Drosophila genetics to understand the basic mechanisms of tissue repair. The typical wound healing response relies on cell division to regenerate the cells that are lost by injury, or aging. However, cells can also be replaced by stimulating existing cells to grow in size by becoming polyploid, a process named wound-induced polyploidization (WIP). Polyploid cells are ubiquitous in insects and plants, but also are also required for the development of many tissues in our body.  What remains unknown is why under conditions of stress, polyploid cells frequently arise?  and how do polyploid cells function during these stress responses? REU projects in the Losick lab will address these two key unanswered questions providing fundamental knowledge on the role of polyploidy in wound repair
Michelle Meyer
RNA is canonically perceived to be the messenger that enables the DNA to be effectively read into protein in biological systems. However, over the last 20 years, our knowledge of the role played by RNA in biology has expanded to include all kinds of new biological functions. Just like proteins, RNA molecules can fold into specific three-dimensional structures where the biological function is a consequence of the structure rather than the specific sequence of the RNA.

The Meyer Lab combines computational and experimental tools to explore the relationship between RNA sequence and structure. Comparative genomic analysis of natural sequences from diverse bacterial species is combined with design, synthesis, and selection in the laboratory to identify and characterize novel sequences. By understanding the relationship between RNA sequence, structure, and biological function we can better understand the roles of RNAs in biological systems, target RNAs with therapeutics, and design RNAs with novel functions.